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ABSTRACT

Input/Output Cost Analysis involves decompositions of the quadratic cost function

into contributions from each stochastic input and each weighted output. In the past, these

suboptimal cost decomposition methods of sensor and actuator selection (SAS) have

been used to locate perfect (infinite bandwidth) sensors and actuators on large scale

_ys:ems. This paper extends these ideas to the more practical case of imperfect actuators

and sensors with dynamics of their own. NASA's SCOLE examples demonstrate that

sensor and actuator dynamics affect the optimal selection and placement of sensors and

LICtlddtors.



1.0 INTRODUCTION

The objective of this paper is to develop and evaluate a method for the selection of

sensors and actuators in the control of finite-dimensional linear systems using imperfect

sensors and actuators -- devices which do not provide instantaneous responses, but have

nontrivial dynamics of their own. In addition, the plant noise and the measurement noise

is assumed correlated. This important case allows the use of accelerometers as sensors

(this always yields correlated plant and measurement noise). Application of the

generalized method to practical control problems demonstrates that correlatedness of the

noise and the dynamics of the actuator and sensor devices can significantly affect the

optimal selection of both the number and location of sensors and actuators.

Consider as a starting point the following familiar dynamic system model:

_p = ApXp(t) + Bp[f(t) + w(t)] (1.1a)

yp(t) = Cpxp(t), z(t) = Mpxp(t) + v(t) (1.1b)

E {w(t)wT(_) } = _(t---_:)W, E {v(t)vT(l:) } = 8(t-_)V, E' {w(t)vT(l:) } = 8(t-_)U(1. lc)

where Xp _ R n', f _ R r_, w _ R n',

controllable and (Ap,Mp) detectable.

z,v, e R n" and (Ap,Cp) observable, (Ap,Bp)

The vectors w(t) and v(t) are respectively zero

mean white noise characterizations of the actuator and sensor noise.

In control of large space structures, the locations of sensors and actuators becomes a

critically significant "degree of freedom" in control design [14, 20]. Among over 60

more recent contributions to the SAS problem, only [4], [7], [10], [11], and [12] consider

noisy actuators (W, V nonzero). In all cases, the disturbances are modelled as Gaussian,

white, and uncorrelated (W, V diagonal, U = 0). Most of the SAS literature takes no

account of actuator or sensor dynamics. Two exceptions are McClamrock [ 19], and

Howell and Baxter, [6]. In [ll the authors extend the cost decomposition approach [2] to
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accommodatenoise correlation betweensensorand actuatornoise sources(W, V not

diagonal,U _ 0). A key conclusionin [1] is thatthepropersensor/actuatorselectionand

placementcanbedrasticallyaffectedby noisecorrelation. For example,thedeletionof a

noise source (by making an actuatoror sensornoise free) may degrade performance

contrary to the usual expectations when noise sources are uncorrelated.

Very fast actuator dynamics may be neglected in stability considerations, [9]. A

more thorough discussion of the effect of actuator dynamics is given by Goh and

Caughey [8]. The analysis of [8] and [9] demonstrates that plant frequencies occurring

above the actuator bandwidth can lead to closed loop instability, even for co-located

sensors and actuators. Goh and Caughey do not address the problem of selection of

dynamic actuators. That is the goal of this paper.

This paper is organized as follows. First the system model is augmented to include

sensor and actuator dynamics. The closed-loop input and output costs are then developed

for the fully augmented system, and they are used to define expressions which reflect the

effectiveness of each dynamic actuator or sensor in minimizing the cost function.

Finally, the method is illustrated by application both to small scale numerical examples

and to NASA's SCOLE flexible space structure model. It is found that in the selection of

noisy actuators and sensors, finite dynamics can significantly affect selection results.

2.0 MODELING DYNAMIC ACTUATORS AND SENSORS

In [2] the results of Closed-Loop Input/Output Cost Analysis (CIOCA) were

developed and applied to the Sensor and Actuator Selection problem (SAS_ for systems

of the form (1.1) under closed-loop control. In [1] the control f(t) is the vector of optimal

state estimate feedback controls:
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f(t) = Gxc(t), G = -R-1BTK. (2. la)

xc = Apxc(t) + Bpf(t) + F[z(t) - Mpxc(t)], F = [PMf + BpU]V -I , (2.1b)

0 = KAp + ApTK- KBpR-1BTK + CpTQCp (2.2a)

0 = [Ap- BpUV-IMp]P + P[Ap- BpUV-1Mp] T- P_V-tMpP (2.28)

T 1 T T
+ BpWBp - BpUV- U Bp

which minimizes the cost function

= E _.{ Ilyp(t)ll2Q + Ilu(t)ll2R},V E**=_lim E[-] (2.3)
t---4,,_

where x c e R nx is the vector of state estimates. The conclusion from [1] for this problem

(1.1), (2.1) (2.2) is that when U_0, the sensor/actuator selection results can be

drastically different.

2.1 Adding Actuator Dynamics

First the system (1.1) is augmented to include stable, observable, controllable

actuator dynamics of arbitrary order.

xa = Aaxa _"Ba(u+wu), (Aa,B,) controllable (2.4a)

f = Cax a, (Aa,Ca) observable, x a e R', f e Rn" (2.4b)

Figure 2.1 presents schematic representations for actuator models of varying degrees of

complexity; Figure 2.1a represents the non-dynamic actuator, while Figure 2.1b

represents the general model for a dynamic actuator with white noise. Note that for the

non-dynamic actuator the noise w(t) is purely additive with the input u(t). In the case of

dynamic actuators the analyst may consider the actuator's output (into the system) to
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include additive actuator output noise wf(t), or actuator command noise Wu(t) which is

filtered by the dynamics of the actuator, or both. Both types of noise are assumed

possible in our development.

Augmenting the system states Xp

actuator states x_, we obtain:

of the original system (2.1) with a vector of

i=Ax+Bu+Dw, y=Cx, z=Mx+v=Zp

[x:lI: lX= X 'Y= ,w= w ,A= Aa , D=

[wet
Uru

, C =
W= UruW , C 'B= B ' =

I- q

where f=Caxa, (Aa, Ca)is observable, and ReLXi(A:,) j <0,

is controllable.

(2.5a)

i = 1, 2, "" • n a. (Aa,B_)

First note that since Xp is observable from yp, (i.e., (Ap,Cp) is observable) and x a is

observable from f (i.e., (A_,Ca) is observable) then from the definitions (2.5) x must be

observable from y, that is:

(A,C) is observable (2.6a)

Also note that the actuator dynamics are assumed stable, so that the system (2.1) has

not 'oeen augmented with any unstable states. Therefore, detectability of (Ap,Mp)

together with stable A a yields

(A,M) detectable. (2.6b)
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Finally, Theorem 1 states the conditions for controllability of the system (2.1)

augmented with actuator dynamics (2.5). Proof of the theorem is contained in the

Appendix.

Theorem 1

Consider the controllable system

_p = Apxp + Bp(f+wf), (Ap,Bp) controllable (2.7a)

xp _ Rr_ (2.7b)

augmented with controllable and observable actuator dynamics of arbitrary order

Xa = AaXa + Ba(u+Wu), (Aa,Ba) controllable (2.7c)

f = Cax a, (Aa, Ca) observable, x a _ Rnx" , f _ Rnu (2.7d)

to form the composite system

= Ax + Dw + Bu (2.7e)

A= 0 A a , D= 0 B , B= B , x= x , w= w (2.7f)

The system s,ates xp are controllable from u(t) if the number of poles minus the

number of zeros is the same for each individual actuator's tran._fer fiwction.

Remark 1: Note that full controllability of the augmented-system state vector x is

not guaranteed under the conditions of the theorem.

Remark 2: The conditions of the theorem are always met for first order dynamic

actuators, (assuming no direct input/output "feedthrough" for the

actuators), since each actuator will have one pole and no zeros.
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Remark 3:

Remark 4:

As long as the original system states Xp are controllable through some

minimum set of actuators meeting the criteria of the theorem above, then

controllability of xp will be maintained with the addition of actuators of

any order and any number of transfer zeros.

Finally, note that the usefulness of the theorem stems from the fact that

by meeting certain mildly restrictive conditions, the actuator dynamics

can be guaranteed not to destroy controllability of the original system

state s, regardless of the pole�zero locations of the plant.

2.2 Adding Sensor Dynamics

Next the system (2.5) is augmented to include stable, observable, controllable

sensor dynamics of arbitrary order.

xs = Asxs + Bs(Mpxp+Vin), (As,Bs) controllable (2.8a)

z = Csxs + Vout , (As,Cs) is observable, xs _ R TM (2.8b)

Re [_,i(As)] < 0, i = { 1, 2, • • • n s} (2.8c)

Figure 2.2 presents schematic representations for actuator models of varying degrees of

complexity; Figure 2.2a represents the non-dynamic sensor, while Figure 2.2b represents

the general model for a dynamic sensor with white noise. Note from both eqn (2.8) and

Figure 2.2b that (similarly to the case of actuator dynamics), adding sensor dynamics

leads to the possibility of both sensor input noise and sensor output noise. The ith

sensor's input noise (Vin)i iS filtered by the dynamics of the ith sensor, while the output

noise (Vout) i is purely additive with the sensor output. Both types of noise are assumed

possible in our development.
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The fully augmented system equations have the following form:

2 =Ax +Bu +Dw

y =Cx

z=Mx +v

xT= xl, xT]S

Bp 0

D= 0 B a

0 0 B

,A=

yT=[yT, fT] , wT=[w T,w T,vT], v :Vou t

0 A a , C = Ca

BsM p 0 A

B = . V=Vou t , W= U* V , M=[00C s]

or C = [C 0]

The response yp(S) of the plant to the input f(s) is given by

yp(S) = Hp(s)f(s)

where

is the plant transfer function.

the input u(s) is given by

where

(2.9a)

(2.9b)

(2.9c)

(2.10a)

lip(s) = Cp(sI-Ap)-lBp. (2.10b)

The response Mx(s) of the actuator/plant system (2.9) to

Mx(s) = H(s)u(s),

H(s) = M(sI-A)-tB.

Finally, the response z(s) of the sensors to an input Mx(s) is given by

(2.1 l a)

(2.11b)



where

(2.12a)

Hs(s) = Cs(sI-As)-lBs (2.12b)

is the transferfunction for the sensor dynamics. Minimal systems are controllableand

observable. Thus, given minimality of the plant/actuatorsystem [(A,B)controllableand

(A,M) observable], then measurability of the full augmented system is guaranteed

[(A ,M )observable]ifthereare no pole/zerocancellationsbetween H(s) and Hs(s).

2.3 Defining the Cost Function

With the properties of the augmented system established, optimal control design for

the augmented system is now considered. Recall that the standard LQG cost function

(2.3) for the unaugmented system (2.1) includes a penalty on the output regulation error

y(t), as well as a penalty on the control energy u(t). However, in the augmented system

(2.5), while the actuator command is given by u(t), the actuator response f(t) (contained

in the augmented output vector y) is distinct from u(t) due to actuator dynamics. A true

measure of control energy is more appropriately stated in terms of a weighted sum of the

variaaces of f(t) rather than of u(t). It can readily be shown, however, that even in the

presence of a weighting on the actuator outputs, f(t), some nonzero weighting on the

actuator inputs u(t) is necessary to avoid an infinite gain solution to the optimization

problem. For this reason, and in view of the relation of f(t) to the design goals as

discussed above, minimization of cost functions of the form

V = E. [lly(t)ll_ + Ilu(t)ll_] (2.13)

and
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Q = diag[Qo,Qa],

provides a stable optimal closed-loop solution.

Q>0 (2.14)

3.0 SELECTION OF DYNAMIC SENSORS AND ACTUATORS

3.1 Closed-Loop Input/Output Cost Analysis

In order to write the expressions for the closed-loop input and output costs, it is first

necessary to put the fully augmented system, under closed loop steady-state optimal

state-estimate feedback control, in the following state space form:

;_(t) = Ax(t) + Dw(t) (3. la)

where

AA = FM

y(t) = Cx(t) (3. lb)

V = E** Vo(t), Vo(t) = y*(t)Qy(t),

yT=[ylT wT=[w T,v T]

o] o:[0 
xT= [xT:TI,

A +BG -F , D =

(3.1c)

(3.1d)

o], W = U o (3.1e)

G = -R-1BTK, 0 = KA + ATK - KBR-IBTK + cTQc

F = [pMT+Du]V -t, 0 = [A-DUV-1M]P + P [A-DUV-IM] T

_ pMTV-IMp + DWD T - DUV-1UTD T

For the system (3.1) the output costs V_, defined by

(3.10

(3.1g)



are calculated as follows [2]

V[ = (112) {E**(_VJ_yi)Yi}

v? = [cxcTQJ i

where X is the steady state covariance satisfying

0 = AX + XA T + DWD T

and where the output costs satisfy the cost decomposition property

ny
V_=V .

i=l

The input costs are defined by

Vi w = (1/2) { Eoo(_VJOwi)wi}

and are found from [21

where S satisfies

(3.2a)

(3.2b)

(3.2c)

(3.2d)

(3.3a)

Viw = [DTSDWlii (3.3b)

0 = ATs + SA + cTQc (3.3c)

and where the input costs also satisfy the cost decomposition property

nw

Viw = V. (3.3d)

The input and output costs represent the in situ contributions that the noise inputs

and the system outputs make in the cost function. We may also wish to know the amount

by which the cost function will be reduced if a noise input is eliminated. This amount,

AVi w, is defined as



AVi _' = V - VRi (3.4)

where VRi is the value of the cost function after the in noise input is eliminated, (but the

controller is not redesigned) and AVi" is the cost reduction due to eliminating w i. A

positive value for AVi _ indicates that elimination of the it_ input will reduce the cost,

while negative AVi w indicates that a cost increase will follow noise elimination. It was

shown in [1] that the AVi w may be positive or negative in the presence of noise

correlation. Partitioning the matrices W and D facilitates direct solution for the cost

reduction [2], yielding

,Ii

AVi w = 2Vi w - d i SdiWii. (3.5)

The closed-loop covariance X may be written

where P satisfies eqn (3.1g) and where N satisfies:

0 = N (A +BG )r + (A +BG )N + FVF T

Also, S has the following form

-K +L -L]S = -L

where K satisfies eqn (3. If) and where L satisfies

0 = L (A -FM ) + (A -FM )TL + G TRG

(3.6)

(3.7)

(3.8)

(3.9)

For notational convenience the steady state covariance X is partitioned as follows:
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Xp X12 X13]x = [P+NI = X_ X, X_,[ (3.10)

Using the notation of (3.10) and the special structure of the closed-loop system matrices

in eqn (3.13) we write the following expressions for the output costs

V_yP= [CpXpC_Qp]ii i = 1, .-. nyp (3.11a)

V[ = [C,XaC,TQa]Ii i = 1, "'" nu (3.11b)

and for the input costs

V u = [GNGTR]ii i= 1, nu (3.11c)

V( v = [D T(K +L )DWlii i= 1, "" nw (3.12a)

V_t .--.V i - [DT(K+L)DW]nw+i,nw+i i 1, "'" nz (3.12b)

V._ _ = [FTLFVla i= 1,

and the input cost reductions

AVi w = [D T(K +L )DW - D TLFUT]ii

• • • nz (3.12c)

i=l, "" nw (3.13a)

AViV. [D T(K +L )DW T T= -D LFU ]nw+i,nw+i i= 1,"" nz (3.13b)

AVi v°_' = [FTLFV - FTLFV - FTLBU]ii . i = 1, • • • nz (3.13c)
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3.2 Dynamic Actuator Effectiveness Values

Now that the closed-loop input and output costs have been detenrtined for systems

with dynamic sensors and actuators, it remains to use the CIOCA results to define

expressions which reflect the effectiveness of each sensor and actuator in the cost

function. This section defines the effectiveness values for dynamic actuators. The

approach taken in [1] and [21 for non-dynamic actuators was to subtract the contribution

the ith actuator's noise in the cost function from the contribution of its control signal, and

to label this difference the "effectiveness" of the ith actuator, Viact. That is,

v ct= vi - Avy (3.14)

This subtracts the "bad" from the "good" contributions of the actuator to measure its

effectiveness. The results of applying (3.14) to sensor and actuator selection for a range

of small and large scale examples in [21, [31, [4], [17] and [181 have demonstrated the

utility of this approach.

Exteading the definition (3.14) for applicability to systems with dynamic actuators,

we proceed as follows. In (3.1) there are two noise sources associated with each

actuator: coeamand noise, w u, which is filtered by the actuator dynamics; and output

noise, wf, which is additive with the actuator output. Thus, the noise contribution

associated with the ith actuator is given by the sum of AVi w" and AVi ''f.

The beneficial control cost for each actuator is not immediately evident. First,

recall that it i_ the actuator output fit), not its input u(t), which drives the system. Next,

note that the contribution of the ith actuator's output in the cost function, Vie, includes the

effects of noise wui. That is, even in the open loop (u--0), Vi e _ 0 for ['Wu]ii > 0 with

dynamics. Hence, to define the beneficial (control) portion of Vie it is necessary to

subtract the portion of Vi f which is due to noise. This can not be accomplished exactly,
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since the actuator command u(t) and the command noise wu(x) are correlated for t > x.

An approximation is obtained, however, by solving for Vi_ when u- 0 (that is, in the

open loop). We define the contribution of Wui to Vi i. and the contribution of u i to Vif as

follows, using the open loop covariance of the actuator states X_X_X_X__:

and

where X__a solves

[V/I w = [C X_xacTQa]ii

[vfi u= v[-[v/]w =

(3.15a)

(3.15b)

0 = A XaXa_+ X_XaAaT + BaWu BT . (3.15c)

Finally, the input costs and the decomposition of the output cost Vi f are combined in

an effectiveness formula for dynamic actuators which is motivated by the results of [1]

and [2]:

Vi act= [Wit'] u - AV wr- AWl w_ . (3.16)

Note that in the absence of command input noise, [Vir] w and Vi'* are both zero. Also, in

the absence of actuator dynamics, fi(t) is equivalent to ui(t). Thus the expression (3.16)

reduces to the original effectiveness formula of [1] in the absence of actuator dynamics.

Note also that (3.16) is applicable whether or not the actuator noise signals are correlated

with other noise sources, and it is applicable to systems with actuator dynamics of

arbitrary order.

3.3 Dynamic Sensor Effectiveness Values

Unlike the actuator noise, (which has a direct path to the output, independently of

the conrollers influence) the noise associated with sensors reaches the system only
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through the controller. Since the gains in the Kalman filter of the LQG controller

represent an optimal trade-off of each sensor's (beneficial) measurement information

versus the (performance degrading) impact of its noise, then a AVi" of large magnitude is

indicative of a highly effective sensor. That is, the fact that a sensor's noise is being

allowed to heavily affect the cost means that its measurement information is even more

critical to performance. For this reason, the following effectiveness formula for non-

dynamic sensors, generalized to accommodate the possibility of noise correlation, was

presented in [I]:

Vi_n_ IAV_I. (3.17)

For dynamic sensors there are two possible noise inputs associated with each sensor.

As in the non-dynamic case, both noise inputs reach the system dynamics through the

Kalman filter. Thus a straightforward extension of (3.17) to dynamic sensors is

lav  l + lav v -'l. {3.18)

Note that this formula is applicable in the presence of sensor dynamics of arbitrary order,

and applies whether or not any of the noise sources are correlated with one another.

This section concludes with the suggestion that (3.16) and (3.18) provide effective

measures of tL,,- contribution of each actuator and sensor in a closed loop optimal LQG

control (with sensor and actuator dynamics properly included).

4.0 SELECTION OF DYNAMIC ACTUATORS FOR SCOLE

In this section the actuator selection problem is solved for a model of NASA's

SCOLE (Spacecraft Control Laboratory Experiment) system. The SCOLE configuration

consists of a flexible antenna suspended from the Space Shuttle cargo bay by a 130 ft.



flexible beam (see Figure 4.6). The effectiveness values for proof mass actuators

(PMA's) located along the beam are calculated and plotted versus position for both

dynamic and non-dynamic actuators in order to evaluate the dynamic actuator selection

method and to determine the effect of actuator dynamics on our results.

4.1 PROBLEM DEFINITION

A certain 2-dimensional SCOLE model includes four flexible modes and no rigid

body modes [15-18]. Approximate open-loop mode shapes for the four flexible modes

are presented in Figure 4.7, and the results of an open loop modal cost analysis are

presented in Table 4.2. A detaa'led discussion of the model development is given in [16]

and [ 18]. The two sensors retained in the model (using the CIOCA method of selection

for non-dynamic sensors) are angular position and rate measurements located at the

center of mass of the reflector [18]. Since there are no accelerometers presents, then the

sensor and actuator noise is uncorrelated. Noise intensity data for the sensors is given in

Table 4.3.

The set of admissible actuators includes both a control moment gyro (CMG) located

at the reflector center of mass and a set of PMAs distributed along the flexible beam. The

actuator selection problem is to determine the optimal location for two PMA devices

along the beam. To this end, the admissible set of PMAs was defined as 20 actuators

spaced at distances of 6.25 feet apart on the 130-foot beam from a point 10.75 feet above

the shuttle end of the beam to a point 129.5 feet from the shuttle. The PMA locations are
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Figure"1._: SCOLE Configuration
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Table 4.2: 2-Dimensional SCOLE Elastic Modal Cost Analysis

Mode#

1

2

3

4

5

6

7

{)

10

11

t2

13

Frequency (Hz)

.2_9E*00

16 IE,'-OI

.497E*01

124E+O2

.237E*O2

.389E,q32

5_C)E*02

_,I_E+02

!(i_,E .-03

. [ ";t;E +()3

.175E+(_3

2'. 5E.(_3

259E*03

Mc_tal Cost

.547E+01

626E+01

IO5E-OI

•1 _I)E-OA

201E-06

.692E-08

A?f)E-(/9

5<_:E l0

?.l_ E-11

142E-I1

322E-12
1

'_l:iE-I "_

.243E-13

Percent Tou]

.466E+02

.533E+02

895E-01

.153E-03

.171E-05

.590E-07

.ar',)E-08

45 _E ('g

_:SE I0

121E-10

27 IE- I l

.723E i2

, .207E-12

T:, pe

Table 43: Noi+eSpecificationsforSCOLEAcmatorsand Sensors

Acluators

Dynamic Noise Noi.e

Range Imcn,;:? Type l .u:nszty

PMA

CMG

10 Ib 0001 (Ib):' Acceleromelers v, = {_)25 (deg/secZ) 2

10 _ ft-lb 10.000, fft-Ib) z Angular Po,. t,.on I() _ edeg) "_

004 ¢deg,/sec) 2



thus selected by evaluating the relative effectiveness of each of the 20 PMA locations.

4.2 RESULTS FOR NON-DYNAMIC ACTUATORS

The PMA selection problem for non-dynamic actuators was solved first, for later

comparison with the dynamic actuator selection results. In all cases (dynamic and non-

dynamic) the actuator effectiveness values are calculated following controller design

which achieves a specified output variance and minimizes the amount by which the

actuators exceed their specified variances. This type of controller is designed by an

iterative selection of the control and output weights using the Output Variance

Assignment (OVA) algorithm (DeLorenzo and Skelton, [3]). The variance specification

for each actuator was equal to 10 times the intensity of its noise (see Table 4.3).

The actuator effectiveness values based upon standard Closed Loop Input/Output

Cost Analysis (CIOCA) [2] for non-dynamic actuators are presented in Figure 4.8. The

figure portrays PMA effectiveness results for four differet_t controllers, each achieving a

different steady-state line-of-sight (LOS) error variance. The results provide a vivid

illustration of how the controller objectives can profoundly influence the actuator

selection results. For lower gain controllers (lower LOS error) the theory determines that

the upper tip is the most desirable PMA location. However, as the gain increases

(controller designed for smaller LOS error) the center of the beam becomes the optimal

location.

The results of Figure 4.8 are readily explained via modal analysis. The mode shape

figures for the four flexible modes retained in the 2-dimensional SCOLE model were

presented in Figure 4.7. Recall that mode #1, which accounts for 46.6 percent of the

open loop modal cost, has a maximum amplitude at the reflector-end tip of the beam (i.e.,

at 130 ft.). Mode number #2, which accounts for 53.3 percent of the open loop modal
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cost, has a maximum amplitude near the 90 ft. point. And mode #3, which accounts for

only approximately 0.1 percent of the open loop modal cost, has a peak amplitude near

the center of the beam.

Next note from Figure 4.8 that as the gain is increased in order to achieve a smaller

steady state LOS error variance, the most effective location for PMAs shifts from the tip

of the beam to the midpoint. This corresponds to a shift from the peak of mode #1 to the

peak of mode #3. The shift occurs even though with higher gain the noise in the PMAs

near the beam midpoint becomes the most detrimental to performance (Figure 4.9). In

fact, Figure 4.9 indicates the reason for the shift in optimal PMA location: with higher

gain the third mode becomes the least damped by the control of the CMG, and becomes

therefore a significant mode to be controlled by the PMAs. Figure 4.10 and Table 4.4

indicate the motion of the closed-loop eigenvalues from their open loop locations under

varying levels of gain (output performance).

Since the control cost of each PMA (Vi u = E_,riu 2) is equal to its effectiveness value

Vi act minus the cost contributic.n of its noise, Viw, then it is clear from Figures 4.8 and 4.9

that the PMAs are being used primarily to control mode #3 (i.e., near the middle of the

beam). However mode #3 is the most lightly damped mode in the closed loop. This is

true in spite of the fact that in all cases the input variances of both the CMG and PMAs,

when normalized by their variance specifications, are of like order of magnitude (see

Figure 4.11 ).

The results demonstrate the interesting result that while the PMAs are being used at

a level similar to the CMGs (in relation to their specified variance levels), they

nontheless make a small contribution to the closed-loop modal damping. This claim is

verified by deleting all PMAs from the system and again using OVA to achieve a

specified LOS error of 0.1 (arc sec) 2, and comparing the resulting closed-loop modal and
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Table 4 4: Modal Characteristics of [As BG] as a Function of Output Performance

Open .1015 .10 .095 .09 .10 (deg) 2

[.x',op (deg) 2 (deg) 2 (deg) 2 (no PMAs)

codr/s) I.,_ 3.14 3.14 314 31-1 3.135

_t .005 (128 027 .0255 .025 .01

_l(sec) 111 1 11.4 11.8 125 1274 31.9

toT(r/s)

",2

"tz(sec)

o_-s(rh,)

Y

t3(sec)

¢o_(r's)

G
_4(sec)

Steady-State

Normalized

CMG

Variance

10,3 56. 62. 93 160. 63

(_15 .675 68 t_')26 702 _8

19.1 026 024 ,015 0119 023

31 29. 299 28.8 28.8 28 9

1X15 .0217 O185 Ol 1 1509 .Ol6

6.45 1.6 1.87 3. I6 3.95 2.16

78 77.4 77. 77. 77. 77 3

.0</5 .('_165 1_7 .0072 .0052 f'_68

2.56 20 1.86 18 2.5 2.49

-- 4604 t_.6 1526 591.1 652
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performance data with that obtained from a full set of PMAs and an output variance of

0.1 (arc sec) 2 (see Table 4.4).

4.3 RESULTS FOR DYNAMIC ACTUATORS

In this section we add actuator dynamics to the SCOLE model and then re-solve the

actuator selection problem solved above. The actuator dynamics are given in NASA's

original SCOLE document [15] to be first-order with a time constant of 0.1 seconds.

That is, for each actuator (both PMA and CMG) the response of the actuator fi(t) to its

input signal ui(t) is governed by

fi(s)/ui(s) = [1/(. l s+l)] (4.7a)

or

t'i = -10fi + 10ui • (4.7b)

There are several possibilities for the characteristics of the white noise associated

with the actuators; white noise may be an input to (and thus be filtered by) the actuator,

or it may be additive with the actuator output (thus unfiltered), or both. In this example

four different actuator noise models are considered. Recalling that the non-dynamic

actuators had additive white noise with intensity W, the following noise cases were

studied for dynamic actuators:

1. white actuator input noise of intensity W u = W;

2. white actuator output noise of intensity Wf = W;

3. both input and output noise, each white and of intensity W;
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4. both input and output noise, each white and of intensity W/2.

The sensors are assumed non-dynamic (without phase lag).

First we examine the effect of actuator dynamics on the maximal theoretically

achievable accuracy. From [3], the lower bound Yi* on the steady-state variance of the ith

Yi = [cPcT]ii

output is given by

i = 1 ..... ny. (4.8)

The values of the lower bound on the LOS error for the fourth-order 2-D SCOLE model

under study were calculated for the four different actuator noise cases listed above, as

well as for the non-dynamic actuator model examined earlier. The results are shown

below.

Table 4.5: Maximal Accuracy for Different Actuator Noise Cases

Noise Case

Max. Acc.

(arc sec) 2

No Dynamics

.086921

Wu=W

.0691

Wf=W

.086921

Wt.=Wu=W

•10072

Wf=Wu=W/2

.07926

From Table 4.5 it is clear that the addition of actuator dynamics along with

retention of the white noise input to the system states (actuator output noise only, Wf=W)

does not change the theoretical maximal accuracy; that is, y" is equal for the non-

dynamic and the Wf = W case. Also from the table, filtering of the actuator noise by

passing it through finite actuator dynamics clearly improves the maximal accuracy.

Finally it is noted that for case (3), Wf = W, = W, the minimal LOS error is greater than

that obtained by all but one of the controllers in the non-dynamic case. Thus for

purposes of comparison only cases (1), (2) and (4) are studied in further detail.



For eachof the threeactuatornoisecasesa controller wasdesigned(using OVA)

which assignedthe steadystateLOS error varianceto 0.1 (arcsec)2 and minimized the

sumof the normalizedactuatorvariancesamongthoseactuatorswhosevariancesexceed

their specifications(normalizedvariancesgreaterthanunity). For eachfinal controller,

thedynamicactuatoreffectivenessvaluesfor the PMAs areplottedin Figure4.12versus

theactuators'positionalongthe 130ft. flexiblebeam.

For each of the noise casesthe most effective actuator location is toward the

reflector-end of the beam, with the highest effectivenessvalues corresponding to

actuatorslocatedat the beamtip. Recalling the mode shapefiguresfor the openloop

flexible modes,theresultsin Figure4.12 indicatethatthePMAs areusedby theoptimal

controllerprimarily for controlof mode#1,which accountedfor 46.6percentof theopen

Ioop modalcost. It is interestingto compareFigure4.12 with the plot of effectiveness

valuesff,r non-dynamicactuators(Figure4.8); note thatthe mosteffective non-dynamic

actuatorsfor thecontrollerwhich achievedLOS error = 0.1 (arcsec)2 werelozatednear

the centerof the beam(70 ft from the shuttle). Hence,the optimal beamlocations for

PMAs in controllerswhich areachievingthe sameoutput performanceareaffectedby

theactuatordynamics.

CONCLUSIONS

The Closed-Loop Input/Output Cost Analysis (CIOCA) method of sensor and

actuator selection (SAS) has beenextendedfor application to systemswith dynamic

sensorsand actuators -- that is, systemsin which the responseof the sensorsand

actuatorsto their inputs is not instantaneousbut governedby deterministicdynamics.

The extendedSAS methodis applicableto systemsin which thedeterministicsensorand

actuatordynamics are of arbitrary order. Application to simple numerical examples
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demonstrates the utility of the SAS method. The examples also demonstrated that even

uniform sensor dynamics can affect the optimal selection of sensors. Application of the

actuator selection method in detail to NASA's SCOLE space structure demonstrated that

even uniform actuator dynamics can affect the optimal selection of actuators.
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Let o_= (nxp+nXa).

W e _ R a×(cx'nu) of the following form

Proof of Theorem 1

The composite system (2.7e)

Wcl]

= [w 2j =

has a controllability matrix

0 BoCaB a (ApBoCaBa+BoCaAaBa)

Ba AaBa Aa2Ba

c_-2 _-3
• "" (Ap BoCaBa+A p BoCaAaBa+"" +BoCaAaa-2Ba)

... A__tB a (A.I)

Now noting that CaA_B a = M i is the ith Markov parameter for the system of actuator

dynamics (2.7c,d), Wcl may be rewritten

Wcl = [0 BoM o (ApBoMo+BoM1) (Ap2BoMo+ApBoMI+BoM2) ...

• '' (A;-2BoMo+Ap-3 BoMI+ • • • +BoMcx_2)] (A.2)

The columns of W c span the controllable subspace of the composite system. Linear

independence of all the rows in W c implies ftfll controllability of the composite system.

[towever, controllability of the original s', stem states, Xp, requires only that the columns

of Wct span the state space for x o. This in turn will hold if and only if the matrix Wcl has

rank nXp.

The proof of the Theorem begins with the proof that (A.3) implies (A.4):

{detMk.O, Mi=O, i=O, I ..... k-l}

= (or ran,ze space of W_t has dimension n_)ranklWcl] nxp

Note that the last block of Wcl has the form

a-2 cL-3
Wcl(u ) = (Ap BoMo+A p BoM 1 + "" • + BoMr__2)

Now let k _ o_-2 be the index of the first nonzero Markov parameter, M k.

(A.3)

,,', .4/

(A.5)

(In this case



the first k+l blocks of Wcl are zero.) Next, use is made of two results from linear

algebra ("R [K]" denotes "range space of K"),

{det K ;_ 0} _ {R [JK] = R [J]} (A.6a)

R [J+K] c R [J] + R [K] (A.7b)

(where "c" means "is contained in") to demonstrate the following results which hold

when M k is nonsingular

R [B o] = R [BoMkl (A.8)

R[B o ApB o] = R [Bol + R [ApBo]

= R [BoMk] + R [ApBoMk]

= R [BoMk] + R [ApBoM k + BoMk+l-BoMk+l ]

c R [BoMk] + R [ApBoM k + BoMk+ l] + R [BoMk+l]

= R [BoMk] + R [ApBoM k + BoMk+ 1]

.'. R [B o ApB o] c R [BoM k ApBoM k + BoMk+l]

Eqns (A.8) and (A.9) lead by induction to the main result

R [B o ApB o • • • Ao_-k-2Bo] c R [BoM k ApBoM k + BoMk+l

A_t-k-2BoMk + • • • BoMa_2]

that is,

R [Bo ApB o "'" A_t-k-2Bo] cR [Wcll.

(A.9)

(A. 10)



Condition (A.3) leads to (A.10). Thus, given (A.3) together with (Ap,Bo)

controllable, thecolumnsof We1areguaranteedto spanthe nxp-dimensionalstatespace

for xpaslong as

thatis, as long as

ct-k-2 > nXo-1.

k < nx a - 1. (A.11)

In fact, the index k of the first nonzero Markov parameter for the system (2.7) will

always satisfy (A.11). To show this, simply note that by observability of (A_,B_), the

observability matrix Woa for (2.7) has full column rank:

From (A. 12),

Thus,

rank(Woa ) = nx a (A. 12)

{WoaBa = 0} :=_ {B a = 0} _ {Contradiction of (Aa, B a) controllable}

WoaB a [MOT, MIT, T T= ..., Mn.r_l] # 0

and so the validity of (A. I I) is guaranteed for (2.7) completing the proof that

{[(Ap,Bo) controllable] & [M k # 0, M i = 0, i = 0, 1..... k-l]}

(A. 13)

(A.14)

(A.15)

:=0 {xp controllable u}

The usefulness of (A.15) stems from the fact that by meeting certain mildly

restrictive conditions the actuator dynamics can be guaranteed not to destroy

controllability of the original system states Xp, regardless of the pole/zero location for the

plant.



It remains to prove the equivalence of the condition (A.3) and the requirements on

the individual actuators' numbers of poles and zeros. First, note that since each actuator

is a single input, single output (SISO) system, then the Markov parameters M i for the

lumped actuator dynamics (2.7) are diagonal matrices of the following form:

M i = diag [mli , m2i , m3i ..... mnui] (A.16)

where mji is the (scalar) ith Markov parameter for the Jth actuator. Thus the condition

(A.3) is met if and only if the index i of the first nonzero markov parameter is equal

among all the actuators.

The input/output transfer function for any nth order SISO system has the form:

T(s) = (Cn_tsn-l+cn_2 sn-2 + -.. + Co)/(sn+dn._lsn-l+ • • • +do) (A. 17)

The scalar Markov parameters m i for the SISO system with transfer function (A.20) may

be shown to be given by:

m o = Cn_ 1

m I = On_ 2 - dn_ln o

n2 = Cn_ 3 -dn_ 2 no---dn_ln I

(A.18)

n n = c o - d I ---d2n I .... --dn_lnn._2

From (A.18), n i is the first nonzero Markov parameter for a system when the

number of zeros in its transfer function is

z=n-i- 1 (A.19)

Letting nj and zj equal the number of poles and zeros for the Jth actuator, respectively,

(A. 19) yields the conclusion that



{detMk _ 0, Mi = 0, i = 0, 1..... k-1 } _ {(nj-zj) = (ni-zi) _ i,j,e (1,2.....nu)}(A.20)

Thusit is concludedthat

{(nj-zj) = (ni-zi)_/ i,j,_ (1,2 ..... nu)} =_ {xp is controllable u}. (A.21)




